← 返回第4章导航

4.2 Venn diagrams

维恩图练习题 - 掌握事件关系分析与概率计算

Exercise 4B

以下是5道综合练习题,涵盖维恩图绘制、事件关系分析和复合事件概率计算等核心内容。

1

Exercise 1

There are 25 students in a tutor group at International College. There are 16 students in the tutor group studying Arabic, 14 studying English, and 6 students studying both English and Arabic.

a) Draw a Venn diagram to represent this information.

b) Find the probability that a randomly chosen student in the tutor group:

    i) studies English

    ii) studies English and Arabic

    iii) studies English but not Arabic

    iv) does not study English or Arabic.

解答过程

a) 绘制维恩图

设"阿拉伯语"为集合 \( A \),"英语"为集合 \( E \)。

  • 交集区域(同时学习两者):6人
  • 仅学习阿拉伯语:\( 16 - 6 = 10 \)人
  • 仅学习英语:\( 14 - 6 = 8 \)人
  • 都不学习:\( 25 - (10 + 6 + 8) = 1 \)人

b) 概率计算

i) 学习英语的概率

\( P(\text{English}) = \frac{8 + 6}{25} = \frac{14}{25} = 0.56 \)

ii) 同时学习英语和阿拉伯语的概率

\( P(\text{English and Arabic}) = \frac{6}{25} = 0.24 \)

iii) 学习英语但不学习阿拉伯语的概率

\( P(\text{English but not Arabic}) = \frac{8}{25} = 0.32 \)

iv) 既不学习英语也不学习阿拉伯语的概率

\( P(\text{neither}) = \frac{1}{25} = 0.04 \)

答案:a) 维恩图;b) i) \( \frac{14}{25} \);ii) \( \frac{6}{25} \);iii) \( \frac{8}{25} \);iv) \( \frac{1}{25} \)
2

Exercise 2

There are 125 diners in a restaurant who were surveyed to find out if they had ordered garlic bread, pasta or cheesecake:

  • 15 had ordered all three items
  • 20 had ordered pasta and cheesecake
  • 43 had ordered garlic bread
  • 26 had ordered garlic bread and cheesecake
  • 40 had ordered pasta
  • 25 had ordered garlic bread and pasta
  • 44 had ordered cheesecake

a) Draw a Venn diagram to represent this information.

b) A diner is chosen at random. Find the probability that the diner ordered:

    i) all three items

    ii) pasta but not cheesecake and not garlic bread

    iii) garlic bread and pasta but not cheesecake

    iv) none of these items.

解答过程

a) 绘制维恩图

设"蒜蓉面包"为 \( G \),"意大利面"为 \( P \),"芝士蛋糕"为 \( C \)。

计算各区域人数

  • 三者交集:15人
  • 仅意大利面和芝士蛋糕:\( 20 - 15 = 5 \)人
  • 仅蒜蓉面包和芝士蛋糕:\( 26 - 15 = 11 \)人
  • 仅蒜蓉面包和意大利面:\( 25 - 15 = 10 \)人
  • 仅意大利面:\( 40 - (10 + 15 + 5) = 10 \)人
  • 仅芝士蛋糕:\( 44 - (11 + 15 + 5) = 13 \)人
  • 仅蒜蓉面包:\( 43 - (10 + 15 + 11) = 7 \)人
  • 都不点:\( 125 - (7 + 10 + 10 + 11 + 15 + 5 + 13) = 54 \)人

b) 概率计算

i) 点所有三种的概率

\( P(\text{all three}) = \frac{15}{125} = \frac{3}{25} = 0.12 \)

ii) 仅点意大利面的概率

\( P(\text{pasta only}) = \frac{10}{125} = \frac{2}{25} = 0.08 \)

iii) 点蒜蓉面包和意大利面但不点芝士蛋糕的概率

\( P(\text{garlic bread and pasta but not cheesecake}) = \frac{10}{125} = \frac{2}{25} = 0.08 \)

iv) 都不点的概率

\( P(\text{none}) = \frac{54}{125} = 0.432 \)

答案:a) 维恩图;b) i) \( \frac{3}{25} \);ii) \( \frac{2}{25} \);iii) \( \frac{2}{25} \);iv) \( \frac{54}{125} \)
3

Exercise 3

A group of 275 people at a music festival were asked if they play guitar, piano or drums:

  • 1 person plays all three instruments
  • 15 people play piano only
  • 65 people play guitar and piano
  • 20 people play guitar only
  • 10 people play piano and drums
  • 35 people play drums only
  • 30 people play guitar and drums

a) Draw a Venn diagram to represent this information.

b) A festival goer is chosen at random from the group. Find:

    i) plays the piano

    ii) plays at least two of the instruments

    iii) plays exactly one of the instruments

    iv) plays none of the instruments.

解答过程

a) 绘制维恩图

设"吉他"为 \( G \),"钢琴"为 \( P \),"鼓"为 \( D \)。

计算各区域人数

  • 三者交集:1人
  • 仅吉他:20人
  • 仅钢琴:15人
  • 仅鼓:35人
  • 吉他和钢琴:\( 65 - 1 = 64 \)人
  • 钢琴和鼓:\( 10 - 1 = 9 \)人
  • 吉他和鼓:\( 30 - 1 = 29 \)人
  • 都不演奏:\( 275 - (20 + 15 + 35 + 64 + 9 + 29 + 1) = 102 \)人

b) 概率计算

i) 演奏钢琴的概率

\( P(\text{piano}) = \frac{15 + 64 + 9 + 1}{275} = \frac{89}{275} \)

ii) 演奏至少两种乐器的概率

\( P(\text{at least two}) = \frac{64 + 9 + 29 + 1}{275} = \frac{103}{275} \)

iii) 仅演奏一种乐器的概率

\( P(\text{exactly one}) = \frac{20 + 15 + 35}{275} = \frac{70}{275} = \frac{14}{55} \)

iv) 不演奏任何乐器的概率

\( P(\text{none}) = \frac{102}{275} \)

答案:a) 维恩图;b) i) \( \frac{89}{275} \);ii) \( \frac{103}{275} \);iii) \( \frac{14}{55} \);iv) \( \frac{102}{275} \)
4

Exercise 4

The probability that a child in a school has blue eyes is 0.27 and the probability that the child has black hair is 0.35. The probability that the child will have black hair or blue eyes or both is 0.45. A child is chosen at random from the school. Find the probability that the child has:

a) black hair and blue eyes

b) black hair but not blue eyes

c) neither feature.

解答过程

设"蓝眼睛"为 \( B \),"黑头发"为 \( H \)。

已知条件

  • \( P(B) = 0.27 \)
  • \( P(H) = 0.35 \)
  • \( P(B \cup H) = 0.45 \)

使用并集公式

\( P(B \cup H) = P(B) + P(H) - P(B \cap H) \)

\( 0.45 = 0.27 + 0.35 - P(B \cap H) \)

\( P(B \cap H) = 0.27 + 0.35 - 0.45 = 0.17 \)

a) 黑头发且蓝眼睛的概率

\( P(\text{black hair and blue eyes}) = P(B \cap H) = 0.17 \)

b) 仅黑头发的概率

\( P(\text{black hair but not blue eyes}) = P(H) - P(B \cap H) = 0.35 - 0.17 = 0.18 \)

c) 既无黑头发也无蓝眼睛的概率

\( P(\text{neither}) = 1 - P(B \cup H) = 1 - 0.45 = 0.55 \)

答案:a) 0.17;b) 0.18;c) 0.55
5

Exercise 5

A patient going into a doctor's waiting room reads Hiya magazine with probability 0.6 and Dakor magazine with probability 0.4. The probability that the patient reads either one or both of the magazines is 0.7. Find the probability that the patient reads:

a) both magazines

b) Hiya magazine only.

解答过程

设"读Hiya杂志"为 \( H \),"读Dakor杂志"为 \( D \)。

已知条件

  • \( P(H) = 0.6 \)
  • \( P(D) = 0.4 \)
  • \( P(H \cup D) = 0.7 \)

使用并集公式

\( P(H \cup D) = P(H) + P(D) - P(H \cap D) \)

\( 0.7 = 0.6 + 0.4 - P(H \cap D) \)

\( P(H \cap D) = 0.6 + 0.4 - 0.7 = 0.3 \)

a) 读两种杂志的概率

\( P(\text{both magazines}) = P(H \cap D) = 0.3 \)

b) 仅读Hiya杂志的概率

\( P(\text{Hiya only}) = P(H) - P(H \cap D) = 0.6 - 0.3 = 0.3 \)

答案:a) 0.3;b) 0.3